Some Consequences of the Nonlocalizability of Space-Time Events

K. Ruebenbauer¹

Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1

Received September 17, 1979

Space-time events are characterized by their coordinates x from the classical point of view. The same events from the quantum-mechanical point of view should be described rather by the expectation value of coordinates $\langle X \rangle$. The expectation value could be evaluated by introducing a density operator $\rho(x, x')$ associated with the event. In the case where $\rho(x, x')$ cannot be described by delta functions strictly monochromatic radiation does not exist. If localizability is limited by Planck's length there are no narrower spectral lines than $\simeq 2 \times 10^{-29} E^2$ (eV) where E stands for the photon energy.

The space-time event $P(x,\alpha)$ is completely described from the classical point of view by spatial and temporal coordinates $x = \{\tilde{r}, t\}$, where $\tilde{r} = \{r_1, r_2, r_3\}$ and by a set of parameters $\alpha = \{\alpha_s\}$ not explicitly dependent on x, i.e., $\partial \alpha_s / \partial x_\mu \equiv 0$, where $x = \{x_\mu\}$ and $\mu = 1, 2, 3, 4$. The same event considered from the quantum-mechanical point of view should be described by replacing x by the operator \hat{X} and using rather an expectation value $\langle X \rangle$ in place of the classical coordinates x. The expectation value of the operator \hat{X} could generally be evaluated in the following way:

$$\langle X \rangle = \operatorname{Tr}(\hat{\rho}X)$$
 (1)

where $\hat{\rho} = \{\rho(x, x'; \alpha)\}$ stands for the density operator associated with the event *P* [and therefore $\text{Tr}(\hat{\rho}) = 1$] and matrix elements of the operator \hat{X} may be defined as follows:

$$X(x, x') = x\delta^4(x - x') \tag{2}$$

¹On leave from the Institute of Nuclear Physics, Kraków, ul. Radzikowskiego 152, Poland.

185

0020-7748/80/0300-0185\$03.00/0 © 1980 Plenum Publishing Corporation

Ruebenbauer

It is obvious that the each point x of space-time is associated with a separate basis vector in the Hilbert space of the operators $\hat{\rho}$ and \hat{X} . Matrix elements of the operator $\hat{A} = \hat{\rho}\hat{X}$ have the form

$$A(x,x') = \int d^4 x'' \rho(x,x'') X(x'',x') = x' \rho(x,x')$$
(3)

and

$$\langle X \rangle = \int d^4 x \, x \rho(x, x) = \int d^4 x \, x \rho(x)$$
 (4)

where $\rho(x) \ge 0$ and $\int d^4x \rho(x) = 1$.

For relatively narrow distribution functions $\rho(x,\alpha)$ it is practical to evaluate $\rho(x,\alpha)$ in terms of the distributional moments. The moments are expressed as follows:

$$g_{l_1 l_2 l_3 l_4}(\langle X \rangle, \alpha) = \int d^4 \xi \xi_1^{l_1} \xi_2^{l_2} \xi_3^{l_3} \tau^{l_4} \rho(\xi, \alpha)$$
(5)

where $\xi = x - \langle X \rangle = \{\bar{\xi}, \tau\} = \{\xi_1, \xi_2, \xi_3; \tau\}$ and $\{l_1, l_2, l_3, l_4\} = 0, 1, \dots$. It is obvious that $g_{0000} \equiv 1$ and $g_{l_1 l_2 l_3 l_4} \equiv 0$ for any $l_{\mu} = 1$. If $\rho(\xi) = \delta^4(\xi)$ all $g_{l_1 l_2 l_3 l_4} \equiv 0$ except g_{0000} and the classical description is restored, otherwise complete physical information is contained in the moments.

The density operator $\hat{\rho}$ could be evaluated also in the energy-momentum representation—namely,

$$\rho(k,k';\alpha) \sim \int d^4\xi d^4\xi' \rho(\xi,\xi';\alpha) e^{i(k\xi-k'\xi')}, \qquad \rho(k,k) \ge 0 \tag{6}$$

where $k = \{\bar{k}, -\omega\} = \{k_1, k_2, k_3; -\omega\}$ describes the wave vector. The variables \bar{k} and ω are not independent but connected by the dispersion relations. For a free particle

$$\bar{k} = \bar{\kappa}(\omega/c) \left[1 + 2(\omega_0/\omega) \right]^{1/2} \tag{7}$$

where $\bar{\kappa} = \bar{k}/(\bar{k}\cdot\bar{k})^{1/2}$ and $\omega_0 = (m_0c^2)/\hbar$, m_0 being the particle rest mass and $\omega \ge 0$. Therefore

$$\rho(k,k') = \rho(\bar{\kappa},\bar{\kappa}';\omega,\omega') \tag{8}$$

Nonlocalizability of Space-Time Events

For localizable events $\rho(\xi,\xi') = \delta^4(\xi)\delta^4(\xi')$ and $\rho(k,k') = \text{const}$ but otherwise $\lim_{\omega \to \infty} \rho(\omega, \omega) = 0$. On the other hand $\rho(\omega, \omega) \simeq \text{const}$ for $g_{0002}\omega^2 \ll 1$.

The uncertainty ΔT of the time interval T = |t - t'| approximately satisfies the relation $\Delta T = (2g_{0002})^{1/2}$ provided that $\partial g_{l_1 l_2 l_3 l_4} / \partial \langle X_{\mu} \rangle \equiv 0$ and $T \gg (g_{0002})^{1/2}$. The uncertainty $\Delta \omega$ for the inverse time interval $\omega = 2\pi/T$ follows approximately the equation $\Delta \omega = |\partial \omega / \partial T| \Delta T$ and hence $\Delta \omega = \omega^2 [g_{0002}/(2\pi^2)]^{1/2}$. For almost monochromatic radiation $(m_0 = 0)$ the equation $\omega = E/\hbar$ is rather well satisfied, where E stands for the average energy of the particle within the beam and ω describes the frequency of the radiation. Hence, the energy spread ΔE within the beam has the approximate form

$$\Delta E = E^2 \left[g_{0002} / (2\pi^2 \hbar^2) \right]^{1/2} \tag{9}$$

and the relative dimensionless spread $\delta E = \Delta E / E$ has the form

$$\delta E = E \left[g_{0002} / (2\pi^2 \hbar^2) \right]^{1/2} \tag{10}$$

For a real space-time almost devoid of matter it seems reasonable to identify g_{0002} with the square of Planck's time interval $(G\hbar)/c^5$, where G stands for the gravitational constant (Wheeler, 1962; Sakharov, 1968; and Kuchař, 1970). In such a case

$$\delta E = E \Big[G / (2\pi^2 \hbar c^5) \Big]^{1/2} \simeq 2 \times 10^{-29} E \text{ (eV)}$$
(11)

For a space-time where the density operator associated with the event coordinates has matrix elements different from $\delta^4(x - \langle X \rangle)\delta^4(x' - \langle X \rangle)$ strictly monochromatic radiation does not exist.

REFERENCES

Kuchař, K. (1970). Journal of Mathematical Physics, 11, 3322.
Sakharov, A. D. (1968). Soviet Physics Doklady, 12, 1040.
Wheeler, J. A. (1962). Geometrodynamics, pp. 71–75. Academic Press, New York.